35 research outputs found

    Juchi Khan Mausoleum: realities, legends and rituals

    Get PDF
    Lore and folk legends designate the burial of Jochi Khan, the eldest son of Genghis Khan, in the eponymous mausoleum in Ulytau, Kazakhstan. The mausoleum was built according to Islamic architecture of the 14th-15th centuries. A.Kh. Margulan, the author of archeological excavations, relying mostly on the folk legends designated the mausoleum’s burial to Jochi Khan. Radiocarbon dating of mausoleum determines two stages of its construction throughout the 14th century and the burial box age later than the death of Jochi Khan in 1225. New evidence from the mausoleum architecture and artifacts suggests that Jochi's burial is not in the mausoleum but a secret place prescribed by the Chinggisid canon. The assembly of Islamic and pre-Islamic traditions and the camel skull found in the burial indicates that the burial was made for a person of Islamic faith from the Golden Horde. Whereas the mausoleum was named in the honor of Jochi Khan

    Methodology for Development of a 600-Year Tree-Ring Multi-Element Record for Larch from the Taymir Peninsula, Russia

    Get PDF
    We developed a long (600-year) dataset for the concentrations of 26 elements in tree rings of larch from the Taymir Peninsula, the northernmost region in the world (ca. 72°N) where trees grow. Tree rings corresponding to the time period from 1300 to 1900 A.D. were studied. Eleven wood strips, each from a different larch tree, were cut into ca. 100 mg samples usually consisting of ten consecutive tree rings (but occasionally five). Between 19 and 40 consecutive samples resulted from each tree, yielding a total of 277 samples. The replication of each time interval ranged from three (for periods 1300-1400 A.D. and 1600-1700 A.D.) to six (for 1450-1600 A.D.). Wood samples were digested with concentrated HNO 3 for measurement of Li, B, Na, Mg, Al, Si, P, Cl, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, I, Ba, La, Ce, Nd, W, Au, Pb, Bi, Th, and U using solution Inductively Coupled Plasma Mass Spectrometry (ICPMS). Fourteen elements (V, Co, As, Y, Nb, Mo, Sb, La, Ce, Nd, W, Au, Th, and U) with extremely low concentrations were eliminated from consideration as unreliable. Here we report our sample preparation and measurement procedure, as well as the observed concentrations in tree rings, emphasizing considerations for developing representative and reliable denrodochemical datasets.Нами был получен длительный массив данных (600 лет) концентраций 26 элементов в годичных кольцах лиственницы с полуострова Таймыр, самого северного региона в мире (около 72° с.ш.), где возможен рост деревьев. Изучались годичные кольца, соответствующие промежутку времени с 1300 по 1900 год н.э. Одиннадцать древесных выпилов, по одному для каждой лиственницы, нарезались на образцы массой около 100 мг, которые, как правило, состояли из десяти годичных колец (но в некоторых случаях из пяти). Из каждого дерева было получено от 19 до 40 последовательных образцов, что дало в общей сложности 277 образцов. Повторность для каждого временного интервала варьировала от трех (для периодов 1300-1400 г.н.э. и 1600-1700 г.н.э.) до шести (для периода 1450-1600 г.н.э.). Древесные образцы растворяли в концентрированной HNO 3 для последующего измерения Li, B, Na, Mg, Al, Si, P, Cl, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, I, Ba, La, Ce, Nd, W, Au, Pb, Bi, Th и U при помощи масс-спектрометрии с индуктивно связанной плазмой (ICP-MS) для растворов. Четырнадцать элементов (V, Co, As, Y, Nb, Mo, Sb, La, Ce, Nd, W, Au, Th и U) с очень низкими концентрациями были исключены из рассмотрения как недостоверные. В данной статье, основной целью которой являлась отработка методики получения репрезентативных и достоверных дендрохимических данных, приводится использованная нами процедура пробоподготовки и измерений, а также полученные концентрации в годичных кольцах

    A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Get PDF
    Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization towards any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain. This article is protected by copyright. All rights reserved.Rising atmospheric [CO2], c(a), is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2], c(i), a constant drawdown in CO2 (c(a)-c(i)), and a constant c(i)/c(a). These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying c(a). The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to c(a). To assess leaf gas-exchange regulation strategies, we analyzed patterns in c(i) inferred from studies reporting C stable isotope ratios (C-13) or photosynthetic discrimination () in woody angiosperms and gymnosperms that grew across a range of c(a) spanning at least 100ppm. Our results suggest that much of the c(a)-induced changes in c(i)/c(a) occurred across c(a) spanning 200 to 400ppm. These patterns imply that c(a)-c(i) will eventually approach a constant level at high c(a) because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant c(i). Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low c(a), when additional water loss is small for each unit of C gain, and increasingly water-conservative at high c(a), when photosystems are saturated and water loss is large for each unit C gain

    Runoff variations in Lake Balkhash Basin, Central Asia, 1779-2015, inferred from tree rings

    Get PDF
    Long highly-resolved proxies for runoff are in high demand for hydrological forecasts and water management in arid Central Asia. An accurate (R2 = 0.53) reconstruction of October-September discharge of the Ili River in Kazakhstan, 1779–2015, is developed from moisture-sensitive tree rings of spruce sampled in the Tian Shan Mountains. The fivefold extension of the gauged discharge record represents the variability of runoff in the Lake Balkhash Basin for the last 235 years. The reconstruction shows a 40 year long interval of low discharge preceded a recent high peak in the first decade of the 2000s followed by a decline to more recent levels of discharge not seen since the start of the gauged record. Most reconstructed flow extremes (± 2σ) occur outside the instrumental record (1936–2015) and predate the start of large dam construction (1969). Decadal variability of the Ili discharge corresponds well with hydrological records of other Eurasian internal drainages modeled with tree rings. Spectral analysis identifies variance peaks (highest near 42 year) consistent with main hemispheric oscillations of the Eurasian climatic system. Seasonal comparison of the Ili discharge with sea-level-pressure and geopotential height data suggests periods of high flow likely result from the increased contribution of snow to runoff associated with the interaction of Arctic air circulation with the Siberian High-Pressure System and North Atlantic Oscillation

    Reconstruction of Ob River, Russia, discharge from ring widths of floodplain trees

    No full text
    The Ob is the third largest Eurasian river supplying heat and freshwater to the Arctic Ocean. These inputs influence water salinity, ice coverage, ocean temperatures and ocean circulation, and ultimately the global climate system. Variability of Ob River flow on long time scales is poorly understood, however, because gaged flow records are short. Eleven tree-ring width chronologies of Pinus sibirica and Larix sibirica are developed from the floodplain of the Lower Ob River, analyzed for hydroclimatic signal and applied as predictors in a regression model to reconstruct 8-month average (December-July) discharge of the Ob River at Salekhard over the interval 1705-2012 (308 yrs). Correlation analysis suggests the signal for discharge comes through air temperature: high discharge and floodplain water levels favor cool growing-season air temperature, which limits tree growth for the sampled species at these high latitudes. The reconstruction model (R-2 = 0.31, 1937-2009 calibration period) is strongly supported by cross validation and analysis of residuals. Correlation of observed with reconstructed discharge improves with smoothing. The long-term reconstruction correlates significantly with a previous Ob River reconstruction from ring widths of trees outside the Ob River floodplain and extends that record by another century. Results suggest that large multi-decadal swings in discharge have occurred at irregular intervals, that variations in the 20th and 21st centuries have been within the envelope of natural variability of the past 3 centuries, and that discharge data for 1937-2009 underestimate both the variability and persistence of discharge in the last 3 centuries. The reconstruction gives ecologists, climatologists and water resource planners a long-term context for assessment of climate change impacts.CRDF Global Research Partnerships program [RUC1-7075-EK-12, FSCX-15-61824-0]; Russian Foundation for Basic Research [13-04-01964, 05-04-48298, 00-05-65041]24 month embargo; Available online 13 September 2016This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore